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Abstract—While recent developments of neural network (NN) models have led to a series of record-breaking achievements in many
applications, the lack of sufficiently good datasets remains a problem for some applications. For such a problem, we can however
exploit a large number of unstructured text corpora as an external knowledge to complement the training data, and most prevailing
neural network solutions employ word embedding methods for such purposes. In this paper, we propose LDA-Reg, a novel knowledge
driven regularization framework based on Latent Dirichlet Allocation (LDA) as an alternative to the word embedding methods to
adaptively utilize abundant external knowledge and to interpret the NN model. For the joint learning of the parameters, we propose
EM-SGD, an effective update method which incorporates Expectation Maximization (EM) and Stochastic Gradient Descent (SGD) to
update parameters iteratively. Moreover, we also devise a lazy update and sparse update method for the high-dimensional inputs and
sparse inputs respectively. We validate the effectiveness of our regularization framework through an extensive experimental study over
real world and standard benchmark datasets. The results show that our proposed framework not only achieves significant improvement
over state-of-the-art word embedding methods but also learns interpretable and significant topics for various tasks.
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1 INTRODUCTION

N EURAL network (NN) models have yielded record-
breaking achievements in various areas of application

due to their ability to extract meaningful features from the
raw data.

The success of NN models is typically associated with
large amounts of training data [27]. However, in many real-
world tasks, there is a lack of training data. For example,
for healthcare applications [22], [33], an Electronic Health
Records (EHRs) database usually has only tens of thousands
of cases. This always causes the over-fitting problem in NN
models and dramatically affects performance.

Interestingly, knowledge associated with different ap-
plications is often available in the unstructured data. Take
the healthcare application as an example, medical literature
from PubMed Central(PMC) which includes more than 5.1
million articles can provide abundant healthcare knowl-
edge. Such abundant external knowledge can be used to
complement limited training data and alleviate the issue of
over-fitting.

Techniques based on word embeddings are typically
used to incorporate knowledge from external corpora. Their
key idea is to learn word vectors to represent each input
feature using large-scale external corpora. These pre-trained
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Fig. 1. Overview of LDA-Reg framework.

word embeddings are used to feed into the model in re-
placement of sparse one-hot representation.

While word embedding methods are proven to be ef-
fective, as they capture rich semantic and syntactic relation-
ships learned from external corpora, the external knowledge
embedded in the word embeddings is not incorporated into
the hidden neurons and less attention has been paid to
interpreting the hidden neurons of the NN models which
are still regarded as black-box models.

In this paper, we propose LDA-Reg, a novel knowledge
driven regularization framework based on Latent Dirichlet
Allocation (LDA), as an alternative approach to word em-
bedding methods. This framework incorporates abundant
external knowledge into the NN neurons adaptively to the
model training process in order to complement the limited
training data. In the meantime, it takes advantage of exter-
nal knowledge to interpret NN neurons for the prediction
task.

Our key idea is that documents in the external corpus are
composed of words, and the occurrences of a word represent
its ”contribution” to a document. This relationship between
words and documents is similar to the relationship between
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input features and hidden neurons in a NN model where
the hidden neurons in the first hidden layer are obtained
by weighted summation of input features and each model
parameter also represents the ”contribution” of an input
feature to a hidden neuron. Based on this observation, we
propose LDA-Reg which transfers the hierarchical relation-
ship among the words, topics and documents from external
corpora to the relationship among the input features, topics
and hidden neurons. By adopting the LDA-Reg, if an input
feature is more informative to a hidden neuron according
to the external knowledge, less regularization is imposed
on the model parameter that connects this input feature
with this hidden neuron, leading to a better learned model
parameter.

Compared with word embedding methods, LDA-Reg
incorporates external knowledge in a deeper manner [9].
To be specific, it incorporates external knowledge directly
into neurons of the hidden layers iteratively rather than
using external knowledge as input features fed to the input
layer. Consequently, in LDA-Reg, external knowledge is an
integral part of the training process and the knowledge
incorporation process is adaptive to the prediction task.

Further, the benefits of LDA-Reg can be understood
from the perspective of representation learning [2]. The hi-
erarchical relationship among documents, topics and words
learned from external corpora contain significant statistical
information. It can guide different hidden neurons to focus
on different topics which further helps discriminate the
importance of different input features adaptively. The key
idea of LDA-Reg is to impose weaker regularization on
the model parameter that connects the hidden neuron with
the more important input feature. This adaptive strength of
regularization guides the hidden neurons in learning more
diversified and discriminative representations by focusing
on those more informative input features. In the meantime,
it helps hidden neurons to attend to different subsets of
input features, which prevent neurons from learning re-
dundant representation and alleviates overfitting [6], [20],
[31]. In addition to boosting the model performance, the
interpretability of hidden neurons can be easily achieved
by inspecting the different topics they focus on.

Figure 1 illustrates the LDA-Reg framework, which is
composed of three modules. The first module is to construct
NN models for different tasks. The right part of Figure 1
shows a recurrent neural network with one hidden layer.
The second module is to pre-train an LDA model on the
external corpus. Since each input feature of the NN model
built in the first module is a word, we train an LDA on
the external corpus for the input features and obtain the
topics. The third module is to impose knowledge driven
regularization using the topics learned from the external
corpus.

Since our proposed regularization is largely determined
by the topic mixture parameters , and topic mixture param-
eters are closely related to the model parameters. Conse-
quently, an efficient method is necessary to update these
two sets of parameters appropriately. We proposed to devise
an effective update method (EM-SGD) where topic mix-
ture parameters are updated via a lightweight Expectation-
Maximization (EM) algorithm, and the model parameters
are learned under a common optimization framework,

Stochastic Gradient Descent (SGD). In order to reduce the
computational costs of EM-SGD, a lazy update and a sparse
update method are also proposed for high-dimensional and
sparse inputs respectively. Moreover, in contrast to word
embedding methods which are difficult to interpret, LDA-
Reg is able to interpret the hidden neurons using the learned
topics to interpret NN models that are often regarded as
black-box models.
Contributions. We make the following contributions:

• We propose a novel and general knowledge driven
regularization framework which to our knowledge is
the first attempt to use the hierarchical relationships
from LDA to regularize the model parameters of the
NN model. It is also the first attempt to use topics to
interpret hidden neurons.

• We design an efficient update method where topic
mixture parameters are updated by lightweight EM
algorithm and model parameters are updated via
SGD. A lazy update algorithm and a sparse update
algorithm are also devised to reduce the computa-
tional costs.

• We conduct extensive experiments using both real-
world healthcare datasets and sentiment analysis
datasets. Results from all the datasets demonstrate
that our regularization achieves better performance
than L2-norm regularization method [17] and all
the baseline word embedding methods such as
CBOW [24], skip-gram [24], fasttext [15], GloVe [26],
SKG-Topic-Add [32] and SKG-Topic-Concat [32], un-
der their best settings.

• We design LDA-Reg to be flexible and general for its
application to any neural network model.

The remainder of the paper is structured as follows.
Section 2 reviews related works on topic models and word
embedding methods. Section 3 introduces the bayesian
interpretation of regularization and Section 4 introduces
the LDA-Reg framework. The optimization method is in-
troduced in Section 5. Section 6 introduces LDA-Reg as
a flexible framework to incorporate external knowledge.
Section 7 reports the experimental results and Section 8

concludes this paper.

2 RELATED WORK

2.1 Topic Models and Word Embedding Methods
Topic models and word embedding methods are two kinds
of methods that are widely used to extract knowledge from
corpora.

Topic models originated from the field of information
retrieval. The main goal for developing the topic models
is to summarize large collections of documents efficiently
with short and essential descriptions while preserving the
statistical relationships [5], [30]. The initial attempt was tf -
idf [10]. Although this method could find the words that
were discriminative for a document, the inter- and intra-
document relationships were not captured. To improve the
tf -idf method, LSI [8] method was proposed whose key
idea was to employ singular value decomposition on the
term-by-document matrix which contained the tf -idf val-
ues. LSI could capture more basic linguistic notions such
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as synonymy and polysemy. Introducing generative proba-
bilistic models into modeling the raw data was a significant
progress in this line of research. pLSI, a generative prob-
abilistic model, was proposed in [13] as an alternative of
LSI. In this model, each word in a document is innovatively
assumed to be generated from a single topic and different
words may be generated from different topics. Later, LDA
model [4], [12] was proposed to improve pLSI. In LDA,
each document is assumed to be generated by a mixture
of topics and each topic is represented as a distribution
over words. Dirichlet prior was employed as the conjugate
prior distribution for better learning of the topic distribution
and the word distribution. LDA model is able to capture
document-level semantics and discover salient topics of a
document. One major advantage of LDA over pLSI is that
the topic distribution is treated as random hidden variables
rather than a large set of individual parameters that are
explicitly linked to the training set. This greatly reduces the
number of parameters that need to be learned and makes it
easy for LDA to generalize to new unseen documents.

The key idea of word embedding methods is to generate
a real-valued vector for each word where rich word relation-
ships are embedded. Traditional word embedding methods
adopt the neural network language model (NNLM) [3],
which is very computationally expensive. In order to re-
duce computational costs, many simple models have been
proposed [15], [24]. CBOW and skip-gram are two simple
representative models for learning word embeddings. They
extend NNLM, but learning the word embeddings using
a simple model. The difference between CBOW and skip-
gram is that the CBOW predicts the current word based on
the context, while skip-gram predicts surrounding words
given the current word. Although the word embeddings
learned by these two methods capture rich semantic and
syntactic relationships, they put less emphasis on global
information. Another line of research which employs matrix
factorization for low-dimensional word embeddings [18] fo-
cuses more on global information. These methods consider
global statistics, but the local information is needed to be
incorporated for better performance. Results in [26] show
these word embedding methods generate a sub-optimal
structure. GloVe [26] improves the two kinds of methods
mentioned above by training on a co-occurrence matrix so
as to combine the advantages of the above two kinds of
methods.

LDA and word embedding methods capture semantics
differently. LDA summarizes documents using topics and
provides an explicit representation of a document. It de-
scribes the hierarchical relationships among words, topics
and documents. In contrast, word embeddings describe
word-word relationships and learn similar word embed-
dings for similar words. In terms of representation, LDA
provides probability distributions that describe the statis-
tical relationship while word embeddings embed word-
level semantics in low-dimensional dense word vectors [28].
When embedding methods are used to incorporate external
knowledge into the NN models, the pre-trained word vec-
tors are fed as the input to the model. This makes it hard to
incorporate knowledge adaptively to the specific prediction
task. On the contrary, in the LDA-Reg, the hierarchical
relationship captured by LDA from an external corpus is

incorporated into the NN model in a deeper way, i.e., into
the hidden neurons and hidden layers of the NN models,
so that the external knowledge is made an integral part of
the learning process and the incorporation of the external
knowledge is adaptive to the prediction task.

2.2 Combining Topic Models with Word Embedding
Methods

In order to better take advantage of both global and local
information, there are related works which combine topic
models and word embedding methods. EETM [34] is an
embedding enhanced topic model where topic information
is transmitted into the topic embeddings by leveraging the
word embeddings so that these two kinds of embeddings
share high-level semantic information sufficiently for better
topic-level representation. GaussianLDA [7] is another work
which enhances the topic model using word embeddings. Its
key idea is to represent the words using word embeddings
in the LDA model so that words that are semantically
related in the embedding space can be grouped into the
same topic and the generated topics are more semantically
coherent.

Different from EETM [34] and GaussianLDA [7] which
are topic models, the neural language model proposed in
[32] is a topic-based word embedding method. Its key idea
is to capture the topic-based word relationship with LDA
and then incorporate it into the word embedding learning
so as to better utilize statistical information about the corpus
for generating word embeddings. In practice, the learned
topic-based word embeddings are added or concatenated
with other word embeddings, e.g.,skip-gram, and are de-
noted as SKG-Topic-Add [32] and SKG-Topic-Concat [32]
respectively.

For EETM [34] and GaussianLDA [7], both are topic
models and hence it is convenient for our proposed LDA-
Reg framework to work with them by replacing the gener-
ation probability of the words with their customized ones.
Details are explained in Section 6. While in [32], the pro-
posed method is an enhanced version of the word embed-
ding method. Consequently, when incorporating external
knowledge into NNs using this method, the learned word
embeddings are fed into the input layer and the incorpora-
tion of external knowledge is not adaptive to the prediction
task.

3 BAYESIAN INTERPRETATION OF REGULARIZA-
TION

In order to take advantage of the external knowledge, we
propose to incorporate the external knowledge into the
regularization term of the model. Before explaining the idea,
we need first to understand the regularization term from the
Bayesian perspective.

From the perspective of Bayes’ theorem, the regular-
ization is regarded as the prior distribution of the model
parameters v. In Bayes’ rule, the posterior probability of
model parameters v is p(v|D) = p(D|v)p(v)

p(D) . Here D denotes
the observed data, v denotes the model parameters, p(D|v)
denotes the likelihood function and p(D) corresponds to a
constant. Model parameters v are usually optimized using
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maximum a posterior (MAP) estimation [16], which is writ-
ten as vMAP = argmin

v
(− log p(D|v)− log p(v)). The term

log p(v) is the regularization term which is log of the prior
distribution for model parameters. Many related works [16],
[19], [21] focus on modeling model parameters prior dis-
tribution. Typically, if Laplacian distribution and Gaussian
distribution are used as p(v), the L1-norm and L2-norm
regularization can be derived respectively. In our work, we
assume p(v) is related to the LDA model learned from the
external corpus and derive a regularization function based
on LDA.

4 LDA-REG FRAMEWORK

Our main idea is that documents in the external corpus
are composed of words, and the occurrences of a word
represent its ”contribution” to a document. This relationship
between words and documents is similar to the relationship
between input features and hidden neurons in a NN model.
The hidden neurons in the first hidden layer are obtained
by weighted summation of input features and each model
parameter also represents the ”contribution” of an input
feature to a hidden neuron.

Based on this observation, LDA-Reg is designed to trans-
fer the hierarchical relationship among the words, topics
and documents from external corpora to the relationship
among the input features, topics and hidden neurons. If
an input feature is more informative to a hidden neuron
according to the external knowledge, less regularization is
imposed on the model parameter that connects this input
feature with this hidden neuron.

To exploit the hierarchical knowledge from the external
corpus, the word mixtures of different topics, denoted by
Φ, is first learned from the external corpus, and then it is
shared and utilized in the NN model for the prediction task.
Specifically, in the NN model, the generation probabilities
for each input feature and each hidden neuron are designed
according to the LDA model [4], [12] by taking account of
both Φ and model parameters. To incorporate the external
knowledge is essentially to maximize the generation proba-
bilities of all the hidden neurons and input features.

To achieve the above-mentioned idea, the LDA-Reg
framework consists of three modules: building the NN
model, training LDA on the external corpus to obtain the
word mixtures Φ and imposing knowledge driven regular-
ization. In the remainder of this section, we will introduce
these three modules in detail.

4.1 Neural Network Model and LDA on External Cor-
pora
In the LDA-Reg framework, we denote the neurons of the
first hidden layer as knowledge-related neurons and we
denote the model parameters that connect the first hidden
layer with the input features as knowledge-related model
parameters, vr . Our knowledge driven regularization is ap-
plied on vr , and for the other model parameters vo, L2-norm
regularization is used as the regularization method. Thus in
the following sections, we mainly focus on the knowledge-
related model parameters vr. For the NN model, the Nega-
tive log-likelihood is set as the loss function.

L(v
r
,v

o
) = − log p(D|vr

,v
o
) (1)

, which corresponds to the first term in the MAP estimation
introduced in Section 3.

In terms of training the LDA model [4], [12] on the
external corpus, the words of external corpora that can not
be recognized as input features of the NN model are deleted
firstly. Next, we train an LDA model on the processed
external corpora to make sure that the learned topics are
the mixtures of input features from the NN model. After the
LDA model is trained, the word mixtures of different topics,
denoted by Φ, is obtained and then used for knowledge
driven regularization explained in Section 4.2.

4.2 Knowledge Driven Regularization
Knowledge driven regularization is designed to incorporate
the hierarchical relationship among words, topics and doc-
uments into the NN model effectively by utilizing the word
mixtures Φ learned from the external corpus. To achieve this,
we need to first define the generation probabilities for the
input features and hidden neurons by using the Φ.

In LDA-Reg, each input feature is regarded as a word.
Take the Sentence Polarity dataset from Section 7.1 as an ex-
ample. On example input is ”It is a fantastic movie.” where
each word is an input feature. The generation probability
of each input feature/word j of the i-th knowledge-related
neuron is designed according to the LDA model [4], [12]:

p(wi,j |
−→
θ i,Φ) =

K∑
k=1

{p(wi,j |−→ϕ k)p(zi,j = k|
−→
θ i)}

=

K∑
k=1

{ϕk,wi,j θi,k}

(2)

where wi,j means the j-th input feature, i.e., one of the
words in the input sentence, for the i-th knowledge-
related neuron. Accordingly,

−→
θ i is the topic mixture for the

knowledge-related neuron i and
−→
θ i needs to be learned

during the NN model training process. Φ is learned from
the external corpus, K is the number of topics, −→ϕk is the
word mixture for topic k, zi,j is the topic indicator.

In the standard LDA model, the occurrences of a word
represent its ”contribution” to a document. In comparison,
in LDA-Reg, the absolute value of the model parameter
is regarded as the ”contribution” of an input feature to
a knowledge-related neuron. Specifically, for knowledge-
related neuron i, when the contribution of the j-th input
feature |vri,j | is considered, the generation probability of this
hidden neuron i is written as:

p(−→wi,−→vir|
−→
θi ,Φ, λ) =

J∏
j=1

{p(wi,j |
−→
θi ,Φ)

λ|vri,j |} (3)

where J is the number of input features, λ is a hyperpa-
rameter that controls the contribution strength of the input
feature.

Lastly, Dirichlet distribution, which is the conjugate prior
for topic mixture parameters

−→
θi , is imposed to control how

uniform the generated
−→
θi are. The joint distribution for −→w i,

−→v ri ,
−→
θ i of knowledge-related neuron i can thus be written

as:

p(−→w i,−→v ri ,
−→
θ i|Φ,−→α , λ) = p(−→w i,−→v ri |

−→
θ i,Φ, λ)p(

−→
θ i|−→α ) (4)
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When considering all the knowledge-related neu-
rons, the joint distribution for −→w i, −→v ri ,

−→
θ i of

all knowledge-related neurons can be written as:∏I
i=1{p(

−→w i,
−→v ri ,
−→
θ i|Φ,−→α , λ)}, where I is the number of

knowledge-related neurons in the NN model.

4.3 Overall Loss Function
Given a real-world task, our goal is to incorporate external
knowledge into regularization in order to complement the
training data as well as interpret the neural network model.
According to MAP estimation introduced in Section 3, the
overall loss function G is defined as follows:

G = − log p(D|vr
,v

o
)−

I∑
i=1

log {p(−→w i,−→v ri ,
−→
θ i|Φ,−→α , λ)} (5)

where the first term corresponds to the loss function of the
NN model and the second term corresponds to the knowl-
edge driven regularization related to external knowledge.

5 OPTIMIZATION (EM-SGD)
In LDA-Reg, two sets of correlated parameters need to be
updated, i.e., knowledge-related model parameters vr and
topic mixture parameters

−→
θ i of each knowledge-related

neuron i. We propose to update both of them jointly from
the joint distribution defined in Equation 5. If we fix topic
mixture parameters

−→
θ i, Equation 5 actually reduces to

MAP with the model parameter prior defined by the spe-
cific choice of

−→
θ i. From this perspective, the optimization

problem defines a series of MAP inference problems. This
suggests we can devise a natural iterative algorithm where
vr and

−→
θ i are optimized alternatively until convergence.

Specifically, at a high-level, the update method consists
of SGD and the EM algorithm. Concretely, for knowledge-
related model parameters, SGD is used as the update
method. For topic mixture parameters, a lightweight EM
algorithm is designed.

Figure 2 shows how SGD interacts with EM in our up-
date method. After both kinds of parameters are initialized,
topic mixture parameters of knowledge-related neurons
are calculated. The regularization is then calculated and
affects the knowledge-related model parameters through
SGD. After the knowledge-related model parameters are
updated via an SGD step, one step of EM is employed to
update the topic mixture parameters based on the updated
knowledge-related model parameters. Subsequently, a new
regularization is calculated for the knowledge-related model
parameters. This process iterates until the algorithm con-
verges. Section 5.1 introduces the SGD method for updat-
ing knowledge-related model parameters and Section 5.2
introduces the EM algorithm for updating topic mixture
parameters.

5.1 Stochastic Gradient Descent Part
When topic mixture

−→
θ i of knowledge-related neuron i

is fixed, gradient descent method is employed to update
the knowledge-related model parameters vr. According to
Equation 5, the gradient for vri,j with respect to the overall
loss function G is

Fig. 2. Overview of EM-SGD.

∂G

∂vri,j
= −

∂ log p(D|vr,vo)

∂vri,j
− λsign(v

r
i,j) log(

K∑
k=1

ϕk,wi,j θi,k) (6)

where ϕk,wi,j is the word mixture value for the j-th input
feature wi,j of the i-th knowledge-related neuron in topic
k and θi,k is the topic mixture value of topic k in the i-th
knowledge-related neuron.

In Equation 6, the first part is the gradients with respect
to the negative log-likelihood and the second part is the gra-
dients with respect to the knowledge driven regularization.
This equation shows that LDA-Reg imposes a regulariza-
tion similar to L1-norm regularization. The regularization
strength on vri,j is related to

∑K
k=1 ϕk,wi,jθi,k, which is the

generation probability for the j-th input feature wi,j of the
i-th knowledge-related neuron. In other words, according to
the external knowledge, if the generation probability of wi,j
is high, it means the j-th input feature is very informative
to the i-th knowledge-related neuron. According to equation
6, less regularization is imposed on the knowledge-related
model parameter vri,j , which connects the j-th input feature
with the i-th knowledge-related neuron.

This adaptive regularization guides the hidden neurons
to attend to more informative neurons so that different
hidden neurons are able to learn more diversified and dis-
criminative representations, which prevents neurons from
learning redundant representation and alleviates overfitting.

5.2 EM Algorithm Part

The update of the topic mixture
−→
θ i for each knowledge-

related neuron i includes the E-step and the M-step. The
update equations of the EM algorithm is introduced in the
following subsections.

E-Step. We calculate a function called the responsibility
in the E-step. For a knowledge-related neuron i, given topic
mixtures Θ and word mixtures Φ, the responsibility of topic
q for the j-th input feature wi,j is defined as follows:

ri,q(wi,j) =
θi,qϕq,wi,j∑K

k=1{θi,kϕk,wi,j }
(7)

This function can be interpreted as calculating the con-
ditional probability that in knowledge-related neuron i, a
particular j-th input feature wi,j is generated by a particular
topic q.

M-Step. After the responsibilities are updated in E-
step, the topic mixture parameters

−→
θ i of knowledge-related

neuron i are updated using the current responsibilities. This
is the M-Step. This section introduces the update formula
for topic mixture parameters.

The gradient of θi,q with respect to G is as follows:
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∂G

∂θi,q
= −

αq − 1

θi,q
−

J∑
j=1

{
ri,q(wi,j)

θi,q
λ|vri,j |} (8)

where θi,q is the q-th dimension of
−→
θ i.

Equation 8 shows that the first term is controlled by
hyperparameter −→α and the second term is related to re-
sponsibility function.

Given fixed responsibility function value, the minimizer
for θi,q can be derived by setting Equation 8 to zero. How-
ever, according to LDA model,

−→
θ i is the topic mixture of

the knowledge-driven neuron i and it is the parameter of
the multinomial distrbution. Consequently, the condition∑K
k=1 θi,k = 1 must be satisfied. We thus propose to utilize

the Lagrange multiplier method to address this issue.
Since the

−→
θ i of each knowledge-related neuron i is

calculated independently, we introduce µi as the Lagrange
multiplier for

−→
θ i. The Lagrangian of the loss function is

L = G+

I∑
i=1

{µi(
K∑
k=1

θi,k − 1)} (9)

After setting the gradient of θi,q and µi with respect to
L to zero, we obtain the update formula for topic mixture
parameters:

θi,q =
(αq − 1) +

∑J
j=1{ri,q(wi,j)λ|v

r
i,j |}∑K

k=1{(αk − 1) +
∑J
j=1{ri,k(wi,j)λ|vri,j |}}

(10)

Equation 10 shows that the topic mixture parameters
are related to two factors. The first is the Dirichlet hyper-
parameter which has the smoothing effects and the second
is the weighted sum of the absolute values of the model
parameters where the weights are responsibilities. Further-
more, topic mixture parameters can also be interpreted as
containing both external knowledge via responsibility and
the internal model information via the model parameters.

With θi,q , LDA-Reg is able to adaptively differentiate
different knowledge-related neurons by guiding them to
attend to different topics.

5.3 Practical Design Considerations

In order to apply LDA-Reg to real-world large-scale
datasets, we need to reduce the computational costs of LDA-
Reg. Empirically, one can make two observations. First, the
update of responsibilities and topic mixture parameters,
which correspond to E-step and M-step respectively, are
time-consuming because they involve large matrix opera-
tions. Second, the inputs are one-hot representations, which
are extremely sparse. We can exploit these findings to avoid
the naive approach of updating LDA-Reg. Therefore, we
devise a lazy update and a sparse update method for high-
dimensional inputs and sparse inputs respectively.

5.3.1 Lazy Update
The update of responsibilities and topic mixture param-
eters involve large matrix operations and thus are very
time-consuming. Fortunately, both responsibilities and topic
mixture parameters do not change too much after the first

few epochs. A computationally efficient approximation of
these two parameters is to update them every few iterations
instead of every iteration, which is the key idea of the lazy
update.

Algorithm 1 shows the lazy update algorithm (LEM-
SGD). −→α is the Dirichlet hyperparameter and Θ is the topic
mixture parameters for all knowledge-related neurons. It is
initialized such that each topic of each knowledge-related
neuron has the same probability. Φ is learned by the LDA
model on external corpora. lr is the learning rate for SGD,
E is the number of the first few epochs when the lazy
update is not employed (For simplicity purposes, we call
E as first epochs hyperparameter) and B is the number
of mini-batches in the training dataset. IEM is the update
interval for responsibilities and topic mixture parameters Θ.
In this algorithm, the iteration counter it is first initialized

to 0. After that, the gradients with respect to negative
log-likelihood are calculated. Subsequently, the algorithm
computes responsibilities and topic mixture parameters Θ
via one EM step and updates knowledge-related model pa-
rameters via one SGD step. Note that the EM step is carried
out only every IEM iterations instead of each iteration.

5.3.2 Time Analysis for Lazy Update

In this section, We provide theoretical time analysis for
the lazy update by analyzing the effect of update interval
IEM as well as the first epochs hyperparameter E. From
Algorithm 1, we note that the overall computation consists
of four steps, namely gradients computation concerning the
negative log-likelihood (line 3), E step, M step and SGD step.
We use tnll to denote the time of the gradients computation
concerning the negative log-likelihood for each iteration.RL
and RN respectively indicate the ratio of computation time
for E step, M step and SGD step when employing and not
employing lazy update to tnll.

Further, we use P and B to denote the total number of
epochs and the total number of mini-batches every epoch.
The total time T for different IEM and E is calculated as
follows:

T = tnll × B × E × (1 + RN )

+ tnll × B × (P − E)×
(1 + (1− 1/IEM )× RL + RN/IEM )

(11)

Equation (11) consists of two terms, the first term calcu-
lates the time of the first E epochs without the lazy update
and the second term represents the time of the remaining
epochs with the lazy update. After reformulating Equation
(11), we obtain:

T = tnll × B×

[P × (1 + RL) + (E +
(P − E)

IEM
)× (RN − RL)]

(12)

From this Equation, we can see E and IEM affect the
computation time through termE+ (P−E)

IEM
. Given P ≥ E,E

has a positive correlation with the total time T and IEM has
a negative correlation with the total time T . Consequently,
in practice, it is recommended that E is set to a relatively
small value and IEM to a relatively large value.
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Algorithm 1 Update for LDA-Reg with LEM-SGD
Input: vr , vo, −→α , Θ, Φ, lr, E, B, IEM
Output: vr , Θ

1: initialize: it← 0, epoch it← 0
2: while not converged do
3: Compute ∂−log p(D|vr,vo)

∂vr

/* E-step */
4: if epoch it < E or it mod IEM = 0 then
5: Compute responsibilities based on Equation (7)
6: end if
7: Compute ∂G

∂vr based on Equation (6)
/* M-step */

8: if epoch it < E or it mod IEM = 0 then
9: Compute Θ for all knowledge-related neurons based on Equation (10)

10: end if
/* SGD-step */

11: vr(it+1) ← vr(it) − lr ∂G∂vr
12: it← it+ 1
13: if it mod B = 0 then
14: epoch it← epoch it+ 1
15: end if
16: end while

Fig. 3. Sparse update.

5.3.3 Sparse Update
For neural network models with knowledge driven regu-
larization, the inputs are one-hot representations, which are
extremely sparse. Introducing sparse matrix operations into
the forward and backward phases of the model is able to
largely reduce the overall computational costs.

The detailed process of sparse update is shown in Figure
3. In the forward phase, the input matrix is first transformed
to the sparse format 1; subsequently, this sparsified input
matrix is multiplied with the knowledge-related model pa-
rameters in order to calculate the knowledge-related neuron
values. In the backward phase, the sparsified input matrix
is multiplied with the gradients of the knowledge-related
neurons so as to calculate the gradients of the knowledge-
related model parameters. The overall computational costs
can be reduced largely by performing sparse multiplications
in both forward and backward phases.

5.3.4 Time Analysis for Sparse Update
The total time of NN model training can be divided into
two parts, i.e., the total time for the first layer and the other
layers. Although the sparse update is implemented for the
first layer, analyzing the time speedup brought about by
sparse update needs to take other layers into consideration.
We thus formalize the time speedup S due to the sparse
update as S = 1

(1−p)+ p
k

. Here p(0 ≤ p ≤ 1) is the portion
of the training time of the first layer out of all the layers,
and k is the speedup of the first hidden layer brought about
by the sparse update. From this equation, we note that both

1. https://docs.scipy.org/doc/scipy/reference/sparse.html

increased k and increased p lead to an increased speedup S.
For the sparse update, it decreases the training time for the
first layer. Consequently, the k value is larger than 1, leading
to the speedup S being larger than 1, which saves the total
training time.

6 A FLEXIBLE FRAMEWORK TO INCORPORATE
EXTERNAL KNOWLEDGE

Since our LDA-Reg framework retains the hierarchical struc-
ture among documents, topic and word, in addition to
standard LDA, LDA-Reg can also work with other topic
models [7], [34] which may further improve the model
performance. To be specific, to integrate other topic models,
the only change to LDA-Reg is to replace the generation
probability of the input word defined in Equation 2 with
their customized ones.

7 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
LDA-Reg framework in terms of predictive performance
and interpretation on two applications, namely, disease pre-
diction and sentiment analysis. By choosing these two ap-
plications, we aim to show the effectiveness of LDA-Reg in
the applications that require abundant external knowledge
and the applications that are typical Natural Language Pro-
cessing (NLP) tasks. The baseline methods include L2-norm
regularization (L2-Reg) method, which does not incorporate
external knowledge, and state-of-the-art word embedding
methods, including CBOW [24], skip-gram [24], fasttext [15],
GloVe [26], SKG-Topic-Add [32] and SKG-Topic-Concat [32].
The last two word embedding methods combine the LDA
model.

7.1 Datasets

MIMIC-III Dataset: MIMIC-III [14] is a public benchmark
dataset that includes various types of medical events gen-
erated by patients, such as diagnoses (e.g., ”Dissection
of Coronary Artery”, ”Coronary Artery Anomaly” and
”Congestive Heart Failure”), lab tests (e.g., ”Phosphate”,
”Alkaline Phosphatase” and ”Rocaltrol”), medications (e.g.,
”Calcium Carbonate”, ”Phospha 250 Neutral” and ”Sodium
CITRATE 4”), etc. In this dataset, we study an 80-class
classification problem that predicts the diseases of a patient
given the medical history of 90 days. This dataset consists
of 19343 samples, each of which has 4351 features.

We transform the irregular medical time series data into
a regular one through resampling the data into 9 disjoint
windows, taking the counts of the medical events within
each 10-day window.
Sentence Polarity Dataset: Sentence Polarity Dataset
v1.0 [25] is a public benchmark dataset for sentiment anal-
ysis. It includes 5331 positive and 5331 negative processed
movie reviews. Each sentence is labeled with its overall sen-
timent polarity. One example sentence with a positive label
is ”It is a fantastic movie.”, where each word is regarded
as an input feature. In this dataset, we perform sentiment
analysis, which is a binary classification task. There are in
total 10662 samples, each of which has 5229 features.
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7.2 External Corpora

PubMed Dataset: We use PubMed2, a free search engine
accessing numerous online medical literature as our external
corpus for disease prediction task using MIMIC-III dataset.
For PubMed medical literature, we focus on the publications
that contain the medical features in the MIMIC-III dataset.
There are in total 53166 qualified publications.
Large Movie Review Dataset (LMRD): We use Large Movie
Review Dataset [23] as our external corpus for the sentiment
analysis task using Sentence Polarity dataset. For this cor-
pus, we focus on the movie review documents that contain
the words in the Sentence Polarity dataset. There are in total
of 50000 qualified documents.
Wikipedia Dataset (WIKI): For the sentiment analysis task,
we also use Wikipedia3 as another external corpus. By using
this corpus, we aim to show the performance of our LDA-
Reg on the general domain knowledge corpus. For this
corpus, we focus on the articles that contain the words in
the Sentence Polarity dataset. There are in total of 100000
qualified documents.

7.3 Data Preprocessing

7.3.1 Training LDA and Word Embeddings on External Cor-
pus
Before training the LDA model and word embeddings, the
words of external corpora that can not be recognized as
input features of our NN model are deleted.

We train an LDA over each processed external corpus
separately and the learned topics are the mixtures of input
features. These LDAs are trained using the gensim package
4.

For word embeddings, the gensim package is used to
learn CBOW, skip-gram, SKG-Topic-Add [32] and SKG-
Topic-Concat [32] word embeddings, the GloVe package 5 is
used to learn GloVe word embeddings, the fasttext package
6 is used to learn fasttext word embeddings.

7.3.2 Organizing Inputs
For word embedding methods, the learned embeddings of
different features are averaged before they are input into the
MLP model. For the LSTM model, the learned embeddings
of different features at the same timestamp are also averaged
as the final inputs.

While for LDA-Reg and L2-Reg, the input data to
MLP/LSTM model is preprocessed using the bag-of-words
method. To be specific, we use the medical event count
vectors as inputs on the MIMIC-III dataset and one-hot
encodings of words as inputs on the Sentence Polarity
dataset.

7.3.3 Splitting Datasets
We divide the whole dataset into a random 6.4-1.6-2
training-validation-test split. Then we use the training
dataset for training our MLP/LSTM model, validation

2. https://www.ncbi.nlm.nih.gov/pubmed/
3. https://dumps.wikimedia.org/enwiki/latest/
4. https://radimrehurek.com/gensim/
5. https://github.com/stanfordnlp/GloVe
6. https://pypi.python.org/pypi/fasttext

dataset for determining the hyperparameters. The test
dataset is used for testing the performance of the model.
Each experiment is run for five times and the average results
and standard deviation are reported.

7.4 Experimental Settings
MLP and LSTM Models: Two kinds of neural network
models are employed in our experiment. The first kind is
MLP and the second kind is LSTM. By conducting experi-
ments on these two models, we aim to show the effective-
ness of LDA-Reg on both simple neural network models
and complex neural network models that are designed for
time series inputs. In terms of the number of hidden layers,
we experiment with both one hidden layer and two hidden
layers.

We implement our MLP and LSTM models in Pytorch7.
For MLP, the hidden size of the models is 128. Both the
hidden layer and the output layer set the sigmoid function
as the activation function. For LSTM models, the hidden
size of the models is 128. They include cell state, input
gate, forget gate and output gate. The input gate, forget
gate and output gate take sequential data as well as the
last hidden state as input and set sigmoid function as active
function. While cell state and hidden state set tanh function
as active function. The activation function for the output
layer is sigmoid. The input sequence lengths for the MIMIC-
III dataset and the Sentence Polarity dataset are 9 and 25
respectively.

For word embedding methods and L2-Reg, weight de-
cay is employed on all model parameters. For LDA-Reg,
knowledge driven regularization is applied on the model
parameters connecting the first hidden layer and input
features. For the other model parameters, weight decay is
employed.
Hyperparameters: Hyperparameters of both LDA-Reg and
baseline methods are tuned using the validation dataset.

In terms of the MIMIC-III dataset, for both MLP and
LSTM models, the optimizer is the Adam gradient method
with momentum as 0.9. The learning rate and weight decay
are set to 0.001 and 0.0001 respectively. The batch size is 128
and the number of training epochs is 600. For LDA-Reg, the
topic number is 50. λ and α are both set to 1. For L2-Reg, the
regularization strength is set to 0.001. For word embedding
methods, the embedding size is set to 500.

In terms of the Sentence Polarity dataset, for both MLP
and LSTM models, the optimizer is the Adam gradient
method with momentum as 0.9. The learning rate and
weight decay are set to 0.001 and 0.0001 respectively. The
batch size is 128 and the number of training epochs is 600.
For LDA-Reg, the topic number is 200. λ and α are set
to 0.001 and 1 respectively. For L2-Reg, the regularization
strength is set to 0.001. For word embedding methods, the
embedding size is set to 500.
Evaluation Metric: To evaluate the proposed LDA-Reg, we
use the metric, Area Under the receiver operating character-
istic Curve (AUC) to measure the classification performance.
A receiver operating characteristic curve is a graph showing
the performance of a classification model at all classification
thresholds. The AUC is then calculated as the area under the

7. http://pytorch.org/
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Fig. 4. AUC for different training ratios.

curve [11] and it measures the model’s ability to distinguish
between different classes. Larger AUC values indicate better
performance of the model. For the MIMIC-III dataset, since
the task is an 80-class classification problem, we compute
the AUC across all classes as the evaluation metric.
Environment: Experiments are run on a server equipped
with the Intel Xeon E5-2620 v4 CPU and four Titan Xp GPU
cards.
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Fig. 6. AUC for Sentence Polarity dataset using LMRD corpus.
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Fig. 7. AUC for Sentence Polarity dataset using WIKI corpus.

7.5 Predictive Performance on Two Real-World
Datasets
In this section, we compare our LDA-Reg with L2-Reg as
well as seven state-of-the-art word embedding methods on
two real-world datasets.

7.5.1 Comparison with L2-Reg

In order to show the benefits of incorporating external
knowledge, we compare the performance between NN
models with LDA-Reg and NN models with L2-Reg which
does not incorporate external knowledge. As mentioned
in Section 7.3.2, the inputs of LDA-Reg and L2-Reg are
both sparse one-hot representation. The only difference
between these two methods is that L2-Reg employs L2-
norm regularization (weight decay) on all the model pa-
rameters. In contrast, LDA-Reg employs knowledge driven
regularization on the knowledge-related model parameters
and employs L2-norm regularization (weight decay) on the
other model parameters. Specifically, we compare these two
regularization methods by varying the amount of training
data while keeping test data unchanged. Since L2-Reg does
not incorporate external knowledge, we want to investigate
the effectiveness of incorporating external knowledge when
the training data is not sufficient by varying the amount of
training data. By default, 80% of the data is used for training
while 20% is used for testing. In this experiment, we vary
the training ratio from 80% to 40% and evaluate the trained
models on the same test data.

Figure 4 shows the AUC of LDA-Reg and L2-Reg for dif-
ferent training ratios in two datasets for both one layer and
two layer models. In both datasets, MLP and LSTM models
with LDA-Reg dominate those with L2-Reg. Also, the AUC
of the models with L2-Reg decreases faster than that of
the models with LDA-Reg as the training ratio decreases.
The improvement of LDA-Reg over L2-Reg is mainly at-
tributed to the fact that LDA-Reg utilizes the semantic
information contained in external knowledge. Specifically,
the external knowledge, which contains hierarchical infor-
mation of topics and words learned from a large number of
external corpora, guides the model to differentiate different
hidden neurons by enabling them to focus on different
topics to discriminate the importance of each input feature
adaptively. Weaker regularization is then imposed on the
model parameter that connects the more important input
feature. This adaptive customized regularization helps the
hidden neurons learn more diversified and discriminative
representations so as to alleviate overfitting [6], [20], [31]. In
comparison, L2-Reg imposes the same strength of regular-
ization on all the model parameters without differentiating
different input features.

In terms of comparison between LMRD and WIKI, we
observe that LDA-Reg with LMRD as external corpus per-
forms slightly better than that with WIKI because LMRD is
more related to the movie review application. Nevertheless,
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LDA-Reg with WIKI as external corpus still achieves better
results than L2 Reg, which confirms the effectiveness of our
knowledge driven regularization.

The slighter decrease in AUC of LDA-Reg with respect
to the training ratio decrease demonstrates that LDA-Reg is
especially beneficial for applications where training data is
insufficient. In this case, external knowledge can be used via
LDA-Reg to complement limited training data and alleviate
overfitting.

7.5.2 Comparison with Word Embedding Methods
In this section, we compare LDA-Reg with state-of-the-art
word embedding methods on the MIMIC-III dataset and
the Sentence Polarity dataset for both one layer and two
layer models. Since both LDA-Reg and word embedding
methods are able to make use of external knowledge, we
do not need to investigate the effectiveness of incorporating
external knowledge by varying the amount of training data.
Consequently, we use all the available training data and
report the results.

Figures 5, 6 and 7 show the AUC for different methods
on all the datasets for both one layer and two layer models.
For SKG-Topic-Add and SKG-Topic-Concat, these two word
embedding methods incorporate information of the topic
model, i.e., element addition and concatenation of the topic-
based word embedding and skip-gram, so that both the
semantic information of local windows and global statistical
information are captured.

From the figures, we observe that SKG-Topic-Add and
SKG-Topic-Concat are not dominating the other word em-
beddings methods. The reason is that the topic-based word
embeddings are only trained using unique words, which
leads to much less training data than the original word
embedding methods that consider all words. LDA-Reg
achieves better results than all the baseline word embed-
ding methods. This is attributed to the fact that LDA-
Reg is able to incorporate external knowledge into hidden
neurons. Consequently, the knowledge is made an integral
part of the training process and the incorporation of the
external knowledge can be adaptive to the prediction task.
In comparison, for word embedding methods, the learned
word vectors are fed as the input to the NN model. Thus,
it is not able to incorporate knowledge adaptively to the
training task. For SKG-Topic-Add and SKG-Topic-Concat,
although these two word embedding methods contain topic
information, such information is embedded in the embed-
ding vectors and is fed as the input to the NN model like
other word embedding methods, where the use of topic
information is not as deep into neurons and adaptive as
LDA-Reg and hence leads to worse results than LDA-Reg.

Furthermore, we note that the improvement of LDA-Reg
over baseline word embedding methods is more obvious
in the MIMIC-III dataset. This is because MIMIC-III is a
much more difficult task, i.e., the MIMIC-III dataset’s input
features are more complex, including features from different
sources, e.g., diagnoses, lab tests and medications, etc.,
leading to the complicated relationship among the input
features. LDA-Reg takes advantage of word mixtures Φ
learned from the external corpus to organize different input
features into semantic groups and help hidden neurons
attend to different subsets of input features by imposing

TABLE 1
Top Five Topics of Knowledge-Related Neurons on MIMIC-III Dataset

Neuron ID: 3 Neuron ID: 17 Overall Salient Topics
Renal Failure Vitamin Deficiency Renal Failure

Cell Related LabTest Cholecalciferol Deficiency Cell Related LabTest
Coronary Artery Disease Hematology LabTest Abnormal Weight Gain

Alkaline Phosphatase Sepsis Alkaline Phosphatase
Abnormal Weight Gain Alkaline Phosphatase Prinzmetal angina

TABLE 2
Top Five Topics of Knowledge-Related Neurons on Sentence Polarity

Dataset using LMRD

Neuron ID: 36 Neuron ID: 42 Overall Salient Topics
Urban Crime/Suspense Crime/Suspense
Music Urban Urban

Crime/Suspense Male Music
Female Sports Male
Male Music Female

customized adaptive regularization, which is beneficial for
dealing with the complex multi-source input features.

In this dataset, LSTM performs better than MLP. The
reason is that the Sentence Polarity dataset aims to predict
the sentiment label of a sentence according to the word
sequence of the sentence and the sequence length of the
Sentence Polarity dataset is 25, much longer than that of
the MIMIC-III dataset. LSTM, which is designed for dealing
with the sequential input data and taking advantage of the
historical information of long sequences, is advantageous in
this dataset.

7.6 Interpretation

One advantage of LDA-Reg is its ability to explain
knowledge-related neurons in the neural network models.
In this section, we show both global model interpretability
by inspecting topic mixture parameters and local model in-
terpretability for individual samples. Specifically, for global
model interpretability, we show the topics of representative
knowledge-related neurons. In terms of local interpretabil-
ity, we show how LDA-Reg identifies the customized signif-
icant topics for individual patients in the disease prediction
task. For these experiments, we use the one layer MLP
model. Also, we use LMRD as the external corpus for
the Sentence Polarity dataset. However, the interpretation
method introduced here can also be applied on different
NN models as well as other corpora.

7.6.1 Global Model Interpretation
Topics of Knowledge-related Neurons. Through the topic
mixture parameters, we are able to obtain the salient topics
of a knowledge-related neuron. In tables 1 and 2, we rank
the topics of the knowledge-related neuron according to
topic mixture parameters and show the results. The first
two columns of these two tables show the top five topics
for two representative knowledge-related neurons. From
table 1, we can find that for the MIMIC-III dataset, the top
topics of a knowledge-related neuron are typically related
or are comorbidities. For example, the neuron of coordinate
ID 3 is about renal failure and its comorbidity, coronary
artery disease, which is a common type of heart disease. For
the neuron of coordinate ID 17, cholecalciferol deficiency
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TABLE 3
Representative Topics for Disease Prediction on MIMIC-III Dataset

Patient 1 Congestive Heart Failure (ICD9-428.0)
Venous Catheterization(ICD9-3893)

Neurons ID Representative Topics
42 Myocardial Infarction Medication
93 Coronary Artery Disease
96 Renal Failure

Patient 2 Hypertensive Chronic Kidney Disease(ICD9-403.91)
Hemodialysis(ICD9-3995)

Neurons ID Representative Topics
64 Renal Disease & Medication
93 Coronary Artery Disease
127 Renal Disease LabTest

is a subtype of vitamin deficiency. Table 2 shows the top
topics for the Sentence Polarity dataset. The neuron of
coordinate ID 36 is related to more relaxing topics such as
urban and music, while the neuron of coordinate ID 42 is
more tensional because the crime/suspense topic ranks the
highest. By inspecting the salient topics of each knowledge-
related neuron, we are able to know what a knowledge-
related neuron ”means”. This is an innovative approach to
explaining what the hidden neuron tries to capture in the
NN models.

Apart from the topics of representative knowledge-
related neurons, we are also interested in the topics that are
salient over all knowledge-related neurons. We calculate the
sum of topic mixture parameters over all knowledge-related
neurons and then denote the topics with the highest sums as
”Overall Salient Topics” shown in the third column of these
two tables. These topics can be understood as significant
topics for the prediction task.

7.6.2 Local Model Interpretation
Risk Factors for Disease Prediction. Given supervised
tasks, LDA-Reg is able to identify customized significant
topics for each sample. In this section, we take the disease
prediction task on the MIMIC-III dataset, which requires
healthcare domain knowledge, as an example. We show
interpretable risk factors found by the LDA-Reg for specific
patients and verify them by doctors from the hospital.

The interpretation process takes two steps. Firstly we
identify representative neurons for each patient by taking
advantage of the gradient-based method [29]: after the
model converges, for each patient, we obtain the significance
of each knowledge-related neuron by calculating its gradi-
ent with respect to the loss function. The knowledge-related
neurons which have high significance values are regarded as
representative neurons for this patient. Secondly, for each
representative neuron, we obtain the most representative
topic according to the topic mixture parameters as intro-
duced in Section 7.6.1.

We take two patients as an example. Table 3 shows the
interpretation results. In Table 3, Patient 1 is diagnosed with
two diseases, namely congestive heart failure and venous
catheterization. The top three representative neurons are
neurons of coordinate IDs 42, 93 and 96. The most rep-
resentative topics for these three neurons are myocardial
infarction medication, coronary artery disease and renal
failure respectively. With the help of doctors from NUHS,
we verified that the found topics are closely related to
the diseases patient 1 is diagnosed with. Specifically, with

regard to congestive heart failure, coronary artery disease
is a related heart disease and renal failure is a typical
comorbidity. Patient 2 is a patient with kidney disease and
is getting hemodialysis. The representative topics of the
top three representative neurons are all related to kidney
disease. Specifically, the topics of neurons of coordinate
IDs 64 and 127 are renal disease, medication and lab test
which are closely related to kidney disease while the topic
of neuron of coordinate ID 93, coronary artery disease, is a
comorbidity of kidney disease. It should be noted that this
interpretation process is general to different kinds of NN
models with different numbers of hidden layers. As long
as the representative knowledge-related hidden neurons are
identified, LDA-Reg is able to interpret these neurons with
representative topics.
Clustering of Knowledge-related Neurons. In this section,
we evaluate the interpretability of LDA-Reg in a quantita-
tive way using clustering. Specifically, we show the inter-
pretability of the learned topic mixture parameters of each
hidden neuron by exploring the association between neu-
rons and labels. The interpretation process takes three steps.
Firstly, for each disease a patient is diagnosed with, we
identify the most representative neuron using the gradient-
based method and assign this disease to this neuron as
the label. We go through all the patients so that neurons
are assigned with labels. Note that one neuron may be
assigned with multiple labels. Secondly, we take advantage
of the spectral clustering method 8 to cluster neurons using
the topic mixture parameter vectors. Cosine similarity is
utilized as the distance metric for the clustering. Lastly,
after the first two steps, each neuron is associated with
labels and assigned to a cluster. To evaluate the performance
of clustering, we employ the class entropy as the evalu-
ation metric [1]. Class entropy measures the homogeneity
of labels and lower values of class entropy indicate that
neurons of the same label are assigned to fewer clusters,
which means better performance. We experiment with #
clusters equaling 2, 5, 10 and 20 and # topics equaling 20,
50, 100, 200 and 500. We then average the class entropy over
different # clusters for each # topics. The averaged results
and standard deviation are reported in Figure 8. It can be
observed that # topics equaling 20 obtains the highest class
entropy, which is due to the fact that such small number
of topics does not capture the semantic information well
enough. When # topics is larger than 50, the class entropy
is slightly increasing, which indicates # topics does not
affect the interpretability of topic mixture parameter vectors
significantly when # topics is relatively large.

7.7 Effectiveness of Hyperparameters

As shown in Equation 10, both contribution strength λ and
Dirichlet hyperparameter −→α affect the learning of topic
mixture parameters. In this section, we are therefore inter-
ested in investigating the effects of λ and −→α . For all the
experiments, we use one hidden layer models. Also, we
use LMRD as the external corpus for the Sentence Polarity
dataset.

8. https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
SpectralClustering.html
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In our experiment, we set every dimension of −→α the
same value and use α to denote the value of each dimension.
This value is set to be inversely proportional to # topics,
which is 50 for MIMIC-III and 200 for Sentence Polarity
using LMRD corpus. Figures 9 and 10 show the AUC for
different combinations of λ and α for both datasets. The
result shows that, for both datasets, −→α does not have signif-
icant impact on the AUC. This suggests that hyperparameter
−→α does not need to dominate in Equation 10. In terms
of contribution strength λ, we observe that λ equaling 10
achieves the worst results. This is due to the fact that large λ
incurs strong regularization, which is harmful to the model.
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Fig. 9. AUC for different α and λ values for MIMIC-III dataset.
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using LMRD corpus.

7.8 Effectiveness of Sparse Update

In this section, we evaluate the effectiveness of our proposed
sparse update method. Figure 11(a) shows the training
elapsed time with respect to epochs for dense and sparse
update methods with one layer MLP model in two datasets.
Here, dense update refers to the update method that does

not employ the sparse update method. For both datasets,
we can see that the training elapsed time for the sparse

update method is less than that of the dense update method.
Also, the training elapsed time for the sparse update method
grows linearly in time as the number of epochs increases,
which proves the effectiveness of sparse update. Figure
11(b) shows the total time of sparse and dense update
method for the two datasets. In both datasets, the total time
of the sparse update method is less than that of the dense
update method, which is consistent with the observation in
Figure 11(a) and further confirms the effectiveness of our
proposed sparse update method.

Table 4 shows the memory consumption for dense and
sparse update in two datasets. From the table, we observe
that the input data of dense update (one-hot representation)
is extremely sparse, i.e., only 2.28% (1533741/67327374)
and 0.28% (106613/37837044) cells have data for MIMIC-III
and Sentence Polarity datasets respectively. For the sparse
update, after transforming the input data to the sparse
format, the memory consumption for the two datasets is
only 3.43% (17.61/513.67) and 0.43% (1.25/288.67) that of
the dense update, which reduces the space complexity by
a wide margin. In addition, since the calculation of sparse
update is exactly the same as dense update, there is no drop
in the model performance for the sparse update.
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Fig. 11. Comparison between sparse update and dense update.

TABLE 4
Comparison of Memory Consumption for Input Data

MIMIC-III
Method # cells Memory Consumption (MB)

Dense Update 67327374 513.67
Sparse Update 1533741 17.61

Sentence-Polarity-using-LMRD
Method # cells Memory Consumption (MB)

Dense Update 37837044 288.67
Sparse Update 106613 1.25

7.9 Effectiveness of Lazy Update
For the lazy update, the update interval IEM as well as first
epochs hyperparameter E are significant hyper-parameters.
In this section, we investigate the effects of these hyperpa-
rameters in terms of computational time with one layer MLP
model in two datasets.

7.9.1 Performance of Update Interval IEM
Figure 12 shows the training time with respect to the num-
ber of epochs for the baseline (L2-Reg) and the lazy update
algorithm with different IEM values. It can be observed that
the time of algorithms with different IEM values linearly
grow when the number of epochs increases, which confirms
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the effectiveness of the lazy update algorithm. Among all six
IEM values, the algorithm without the lazy update (IEM
= 1) takes the longest time and the algorithm with IEM
= 50 takes the shortest. This is due to the fact that the
algorithm with a larger IEM updates responsibilities and
topic mixture parameters less frequently. Specifically, the
computational time of algorithm with IEM=50 is nearly the
same as that of the baseline method, without a drop in AUC.
This again confirms the effectiveness of the proposed lazy
update algorithm.

7.9.2 Performance of First Epochs Hyperparameter E
Figure 13 shows the training time with respect to epochs for
the baseline (L2-Reg) and the lazy update algorithm with
different E values. Since the first epochs hyperparameter E
affects the early stage of training, we only show the first 60
epochs’ results. From the figures, we observe that at epochs
5, 10, 20, algorithms with different E values diverge. This
is because the lazy update algorithm spends more time
computing responsibilities and topic mixture parameters
each epoch before E epochs. The effect of different E values
of the Sentence Polarity dataset is more obvious than that of
the MIMIC-III dataset. This is because the number of topics
for the Sentence Polarity dataset is 200, much larger than
that of MIMIC-III dataset, which is 50. The larger number
of topics causes a longer training time each epoch when
the lazy update is not employed, which leads to the larger
training time difference between the first E epochs and the
remaining epochs. After 60 epochs, the algorithm takes the
most time when E=50 and takes the least when E=1. This
is because the algorithm with larger E takes more time in
the first E epochs when the lazy update is not employed.
When E is set to 1, the training time of LDA-Reg is nearly
the same as the baseline, without an AUC drop.
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8 CONCLUSIONS

In this paper, we propose a novel knowledge driven reg-
ularization framework, LDA-Reg, to incorporate external
knowledge from unstructured corpora into the NN model.
Efficient update method EM-SGD that incorporates EM and
SGD is designed to update topic mixture parameters and
model parameters. Lazy update and sparse update algo-
rithms are also devised for the high-dimensional inputs and
sparse inputs respectively. Experiments show that LDA-Reg
obtains better performance than the regularization method
that does not incorporate external knowledge. Also, our
LDA-Reg yields better performance than existing state-of-
the-art word embedding methods while providing mean-
ingful interpretation for the hidden neurons of NN models.
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In this work, the external knowledge is integrated into
the first layer. Moving forward, we plan to extract external
knowledge with the hierarchical LDA and then integrate
the knowledge into hidden layers. Another extension of the
work would be constructing a knowledge graph using the
external corpora for integrating into the NN model.
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